
AcroTEX.Net

The cntdwn Package

Creating short and long countdowns

D. P. Story

Copyright © 2010 dpstory@acrotex.net www.acrotex.net
Prepared: September 1, 2010 Version 1.0

mailto:dpstory@acrotex.net
www.acrotex.net

Table of Contents

1 Introduction 3

2 Requirements and Sample files 3

3 The short countdown 3

3.1 Using \setShortCntDwn in the preamble . 4

3.2 Commands that go in the body . 6

4 The long countdown 7

4.1 Using \setLongCntDwn in the preamble . 8

4.2 Commands that go in the body . 11

4.3 The clock timer . 11

• Using \setClockTimer in the preamble . 12

• Commands that go in the body . 13

3

1. Introduction

The cntdwn package provides two types of countdowns, short and long.

• A short countdown, accessed through the shortcount option, is a countdown
(or count-up) that is for a relatively short time period (less than a day). Such a
countdown is designed for a talk (or presentation).

• A long countdown, accessed through the longcount option, is a countdown to a
distant event, perhaps many days or even years in the future.

• As a bonus of long countdown, a clocks can be defined for local or time zones.

Each type of countdown (clocks excepted) has several events: (1) the main event, which
is the target of the countdown; (2) pre-events, events that occur before the occurrence
of the main event; and (3) post-events, events that occur after the occurrence of the
main event. Each event occurs at a definable instant in time, and may have a (JavaScript)
action associated with the event.

2. Requirements and Sample files

The cntdwn requires the eforms package, part of AeB (the AcroTEX eDucation Bundle),
and, of course, the hyperref package.

The PDFs need to be viewed in Adobe Reader (or Acrobat), not some other nonconform-
ing PDF viewer that does not support document level JavaScript.

Basic examples are provided in the examples folder; advanced examples can be found,
in time, on my AeB Blog site, http://www.math.uakron.edu/~dpstory/aebblog.html.

3. The short countdown

To input the code for the short count, type either

\usepackage{cntdwn} or \usepackage[shortcount]{cntdwn}

in the preamble.

We begin with an example of the default behavior of a short countdown:

To start the countdown, press the Start button (the second form field from the left).
The left-most field is a text field, the others are buttons. The original idea behind this
behavior was that this seemed a nice way to do a count for a talk: (1) at a preselected
time (45 seconds in this example) the first button would turn green indicating to the
speaker that time is running out; (2) a little later, the second notification signal appears,
a yellow button (at 30 seconds); at a third notification time, the third button starts
blinking red (at 15 seconds), this tells the speaker to wrap it up; (4) finally, at the end
of the defined length of the timer, the third button stops blinking indicating that the
speaker’s time is up.

http://www.math.uakron.edu/~dpstory/aebblog.html
http://www.math.uakron.edu/~dpstory/aebblog.html

The short countdown 4

The buttons also play roles as controls over the counter, the three buttons are Start,
Pause, and Stop. The user can press the Pause button to pause the count (without
taking away from his/her time), then restart it by pressing the Start button.

The code for the above countdown consisted to two sets of lines. In the preamble, we
find,

\setShortCntDwn{Timer1}{%
length=1*\minutes,
notify1=45*\seconds,
notify2=30*\seconds,
notify3=15*\seconds

}

This defines a timer name Timer1, with key-value pairs give above. The length of the
countdown is 1 minutes, following by the defining of three notification times. The mean
of these key-values is clear in light of the above example.

The second line of code is the laying down of the timers themselves.

\cntdwnDisplay{Timer1}{.5in}{11bp}
\cntdwnStartT{Timer1}{11bp}{11bp}
\cntdwnPauseT{Timer1}{11bp}{11bp}
\cntdwnStopT{Timer1}{11bp}{11bp}

The first argument of each is the name of the timer to use, Timer1, in this case. All
of these form fields are optional; if none is included in the document, the timer ticks
away silently.1

3.1. Using \setShortCntDwn in the preamble

For each short countdown timer, the \setShortCntDwn must be used to define the
properties of the timer.

\setShortCntDwn{<t_name>}{<key-values>}

Command Description: The command defines the properties of the countdown. Inter-
nally, the command defines macros \seconds, \minutes, and \hours. For key-value
pairs that take a time as its value, use these commands to define the time value, for
example, 20 minutes should be denoted 20*\minutes (use * for multiplication); for
1 minute and 30 seconds, you can type either 1*\minutes+30*\seconds or, alterna-
tively, 1.5*\minutes; and so on.

Parameter Description: The first parameter <t_name> is a name you assign the timer.
The name must be unique among all timer names defined in the document. The second
parameter consists of key-value pairs, described below.

1Why would anyone do this, you might ask?

The short countdown 5

Key-Value Pairs: The second parameter takes several key-value pairs.

• length: The length of the countdown, the default is 20 minutes. (20*\minutes)

• stopwatch: A Boolean, which if true, the counter counts up, like a stopwatch; he
default is false, in this case the counter counts down. If stopwatch is not in the
list of parameters, the counter counts down.

• onfinish: A choice key that determines the behavior of the counter when it
reaches the main time event. Possible values are stop (the default) and continue.
If onfinish=continue, the clock continues to count even after the main time has
been attained.

• endmsg: When the timer reaches the main time event, the default behavior of the
timer is to write a message to a text field created by the \cntdwnEndTarget com-
mand. The default message is “This ends the Presentation, any questions?” This
message can be changed for this timer using the endmsg key. To globally change
the message, redefine the command \cnddwnDefaultEndMsg. The redefinition of
this command must occur before the expansion of any \setShortCntDwn com-
mand.

The next three keys take time as a value. Use the special macros \hours, \minutes,
and \seconds, as explained above.

• notify1: The first notification time; the time before/after the main time event.
The time is a prior time if the counter is counting down; and is a post time if the
counter is counting up (stopwatch=true). The default is 5*\minutes.

• notify2: The second notification time; the time before/after the main time event.
The time is a prior time if the counter is counting down; and is a post time if the
counter is counting up (stopwatch=true). The default is 3*\minutes.

• notify3: The third notification time; the time before/after the main time event.
The time is a prior time if the counter is counting down; and is a post time if the
counter is counting up (stopwatch=true). The default is 1*\minutes.

If stopwatch=false, the default, the counter is counting down to the main time event
(at time 0 seconds); in this case notify1 > notify2 > notify3. If stopwatch=false,
the counter is counting up to the main time event (at time length); in this case notify1
< notify2 < notify3. If these restrictions are not met, the timer and notification may
not be as expected.

The next four keys concern the actions that are taken at the four notification times
(notify1, notify2, notify3, and the main time event). These actions are in the form
of JavaScript functions, which may be re-defined by the document author to obtain
custom behaviors.

• event1: A JavaScript function (which the document author can create) to handle
the first notification event. The default event turns the Start button green and
causes a beep to sound.

The short countdown 6

• event2: A JavaScript function (which the document author can create) to handle
the second notification event. The default event turns the Pause button yellow
and causes a beep to sound.

• event3: A JavaScript function (which the document author can create) to handle
the third notification event. The default event causes the Stop button to blink red
and causes a beep to sound.

• endEvent: When main time is reached (time 0 or length), this function turns
the Stop button to solid red (non-blinking), and writes a message to the text field
created by the command \cntdwnEndTarget.

• startcolor: The color used by the default event1 function to color the Start
button. The color is a JavaScript color; the default is color.green.

• pausecolor: The color used by the default event2 function to color the Pause
button. The color is a JavaScript color; the default is color.yellow.

• stopcolor: The color used by the default event3 and endEvent functions to
color the Stop button. The color is a JavaScript color; the default is color.red.

• autorun: A Boolean that determines whether the count begins when the page
containing the counter is opened. The default is false.

• refreshrate: The refresh rate of the counter, the default is 1000 (milliseconds).

3.2. Commands that go in the body

The main field for the counter is \cntdwnDisplay, and it has three supporting fields
\cntdwnStartT, \cntdwnPauseT, and \cntdwnStopT.

\cntdwnDisplay[<eforms_options>]{<t_name>}{<width>}{<height>}
\cntdwnStartT[<eforms_options>]{t_name}{<width>}{<height>}
\cntdwnPauseT[<eforms_options>]{t_name}{<width>}{<height>}
\cntdwnStopT[<eforms_options>]{t_name}{<width>}{<height>}

Parameter Description: The first optional parameter is used to change the appearance
of the fields (these fields use the eforms package). The second parameter is the name
of a timer (<t_name>) that has already been defined by \setShortCntDwn. The last
two parameters sets the width and height of the form fields.

Command Description: All four of these fields are optional (no JavaScript excep-
tions are thrown if they do not exist). \cntdwnDisplay show the countdown of the
timer; \cntdwnStartT is the start button, \cntdwnPauseT is the pause button, and
\cntdwnStopT is the stop button. The capital letter T indicates that these buttons are
the Target of the default event functions. Below, we describe non-target start, pause,
and stop buttons.

When the timer reaches it main time event (time 0 for a countdown clock, and time
length for a count-up clock), the default endEvent writes message to the multiline text
field created by \cntdwnEndTarget.

\cntdwnEndTarget[<eforms_options>]{t_name}{<width>}{<height>}

7

Parameter Description: The four parameters are the same as described above for the
\cntdwnDisplay field, for example. This field is optional, if it does not exist, no ex-
ception is thrown.2

The cntdwn package also provides three form field buttons for starting, pausing, and
stopping the target count. The parameters are the same as those of the ‘T’ counterparts.

\cntdwnStart[<eforms_options>]{t_name}{<width>}{<height>}
\cntdwnPause[<eforms_options>]{t_name}{<width>}{<height>}
\cntdwnStop[<eforms_options>]{t_name}{<width>}{<height>}

4. The long countdown

A long countdown is one where the main countdown event is in the distant future.
Since a short countdown is designed for less than one day, a long countdown is for
times greater than a day.

As an example, let us countdown to New Year’s Day, which is 1 second after midnight.

This countdown is in local time. No matter where you are in the world, in whatever time
zone, the countdown reflect the time until your New Year’s Day.

The time until my friend Jürgen celebrates New Year’s Day is shown below:

Note that there is a difference in the count between the two counters, probably in the
hour position; this is due difference between his timezone offset, and yours. This
counter gives the time until my friend celebrates the New Year; it should read the same
throughout the world, for he celebrates at a unique time in the world.

As with the short countdown, to obtain such clocks we must set the clocks parameters
in the preamble (using the \setLongCntDwn command), and place the countdown clock
anywhere we like in the body of the document (using \lcntdwnDisplay).

In the preamble, we have

\setLongCntDwn{NewYearsLocal}{%
date=2011/01/01,
time=00:01:00,

}
\setLongCntDwn{NewYearsCEST}{%

date=2011/01/01,
time=00:01:00,
tzoffset=+0100

}

2Actually, an exception is thrown, but it is “caught” so no harm is done.

The long countdown 8

The first one sets the parameters of the local clock. The date and time are specified in
the obvious way. We set the counter to run and pause automatically. The parameters
for the Central European New Year clock are the same, with one exception; I’ve included
a value for the tzoffset key (time zone offset), this is +0100 (in Germany during the
Winter).

In the body of the document, we place the countdown clocks,

\lcntdwnDisplay{NewYearsLocal}{3.5in}{11bp}
...
\lcntdwnDisplay{NewYearsCET}{3.5in}{11bp}

As with the short count, we reference the counter parameters through the name of the
counter, as defined using \setLongCntDwn.

4.1. Using \setLongCntDwn in the preamble

For each long countdown timer, the \setLongCntDwn must be used to define the prop-
erties of the timer.

\setLongCntDwn{<t_name>}{<key-values>}

Command Description: The command defines the properties of the countdown. Inter-
nally, the command defines macros \seconds, \minutes, \hours, \weeks, and \years.
For key-value pairs that take a time as its value, use these commands to define the time
value, for example, 20 minutes should be denoted 20*\minutes (use * for multiplica-
tion); for 2 weeks and 3 days, you can type either 2*\weeks+3*\days or 13*\days;
and so on.

Parameter Description: The first parameter <t_name> is a name you assign the timer.
The name must be unique among all timer names defined in the document. The second
parameter consists of key-value pairs, described below.

Key-Value Pairs: The second parameter takes several key-value pairs.

• date: The date of the event. The value of the date key has the form YYYY/MM/DD.
If date key is not specified then the default date of 1970/01/01 is used and
a warning message is written to the log. Valid variations on the date key are
YYYY (in which case the default month and day values are used, YYYY/01/01, and
YYYY/MM (again, the default day is used YYYY/MM/01). Year must be specified with
four numbers, and the month and day with two numbers. (The first month is 01.)

• time: The time of the event on the specified date. The format for the value of
time is HH:mm:SS (hours, minutes, seconds). All time components are specified
with two digits, if specified at all. The default value of 00 is taken for any missing
component. If no time is specified then 00:00:00 is used; if HH only is specified,
then the value for time is HH:00:00; if HH:mm is specified, then the value of time
is 00:mm:00.

The long countdown 9

• tzoffset: The time zone offset of the time of the event. If tzoffset is not
specified, then time is interpreted as local time. The format for tzoffset is
Z|OHHmm, where Z means that local time is equal to UT (Universal Time). For the
OHHmm pattern, the O is + (plus) or - (minus); a + (plus) means that local time is
later than UT, and a - (minus) means that local time is earlier than UT. For example
CST (Central Standard Time) is -0600while CET (Central European Time) is +0100.
See http://www.timeanddate.com for time zone information. HH is the number of
hours offset from UT and mm is the number of minutes (some time zones are
measured in hours and minutes, for example, Australian Central Standard Time
is +0930).

• refreshrate: The refresh rate of the counter, the default is 1000 (milliseconds).

• autorun: A Boolean that determines whether the count begins when the page
containing the counter is opened. The default is true.

• autopause: A Boolean that determines whether the count is paused when the
page containing the counter is closed. The default is true.

• autorunenabled: A Boolean that enables the autorun feature. The default value
of this key is true. The purpose of this key-value is to turn off autorun dynami-
cally (through JavaScript). The timer object that keeps all timer information has a
key named bAutorunEnabled. If the name of the timer is MyTimer, and you exe-
cute _oMyTimer.bAutorunEnabled=false, the timer, if already paused, will not
start (automatically) when the page containing the timer is opened again. For an
example of usage, see the file armistice_day.pdf, titled “The cntdwn Package:
Handling Notification Events for the Long Countdown Timer, Remembrance Day,”
available on the AeB Blog site.

• notify1, notify2, notify3: Leading up to the main time event are three pre-
events that occur at times notify1 > notify2 > notify3 before the main event.
These are the first, second, and third notification event times. The times are rela-
tive to the main event, so if notify1=1*\weeks, then the first notification event
occurs 1 week before the main event.

• notify5, notify6, notify7: Following the main time event are three post-events
that occur at times notify5 < notify6 > notify7 after the main event. These
are the fifth, sixth, and seventh notification event times.3 The times are relative
to the main event, so if notify5=5*\hours, then the fifth notification event (the
first after the main event) occurs 5 hours after the main event.

• eventhandler: When the timer reaches any of the seven notification times, a
event handler function is launched, the default function is _NoOpt. The _NoOpt
does nothing. The document author ca define his/her own event handler using
this key.

An event handler should take three parameters doc, cTimer, and nEvent. Use
the insDLJS environment to define your custom handler. A very simple example
is

3You may ask about the fourth notification event, that event is the main time event, the event that occurs
when the countdown reaches 0.

http://www.timeanddate.com
http://www.math.uakron.edu/~dpstory/aebblog.html

The long countdown 10

\begin{insDLJS}[myEventHandler]{dps}{My Event Handlers}
function myEventHandler (doc,cTimer,nEvent) {

console.show();
console.println("Event number " + nEvent + " just occurred);

}
\end{insDLJS}

and type eventhandler=myEventHandle as part of the key-values of \setLong-
CntDwn.

• endtimecolor: When main time event is reached (0 seconds), the color of the
display is changed to the JavaScript color determined by this key. The default is
color.red.

• displayfunc: This JavaScript function displays the count; the default display
function is _defaultLDisplayFunc, it takes parameters

function _defaultLDisplayFunc(f,nYears,nDays,nHours,nMinutes,nSeconds)

where f is the field object of the display field, the meaning of the other parameters
is obvious.

The default display function uses the strings year, years, day, days, hours, hour,
minutes, minute, seconds, second. For localization of these strings, the document
author may redefine the commands

\newcommand{\cntdwnYear}{year}
\newcommand{\cntdwnYears}{years}
\newcommand{\cntdwnDay}{day}
\newcommand{\cntdwnDays}{day}
\newcommand{\cntdwnHour}{hour}
\newcommand{\cntdwnHours}{hours}
\newcommand{\cntdwnMinute}{minute}
\newcommand{\cntdwnMinutes}{minutes}
\newcommand{\cntdwnSecond}{second}
\newcommand{\cntdwnSeconds}{seconds}

• onfinish: A choice key that determines the behavior of the counter when it
reaches the main time event. Possible values are stop and continue (the default).
If onfinish=stop, the clock stops the count when main event time is attained
(when the timer reaches 0 seconds).

• endmsg: When the timer reaches the main time event and onfinish=stop, the de-
fault behavior is to write a message to a text field created by the \lcntdwnDisplay
command. The default message is “The time has expired.” This message can be
changed for this timer using the endmsg key. To globally change the message,
redefine the command \lcnddwnDefaultEndMsg. The redefinition of this com-
mand must occur before the expansion of any \setLongCntDwn command.

The long countdown 11

4.2. Commands that go in the body

In the body of the document there are several commands used with the long countdown
timer.

\lcntdwnDisplay[<eform_options>]{<t_name>}{<width>}{<height>}

Command Description: The command creates a text field that holds the current count-
down.

Parameter Description: The first optional parameter is used to change the appearance
of the field (these field use the eforms package). The second parameter is the name of
a timer (<t_name>) that has already been defined by \setLongCntDwn. The last two
parameters sets the width and height of the form fields.

\lcntdwnToggle[<eform_options>]{<t_name>}{<width>}{<height>}

Command Description: The command creates a push button field that is used to toggle
the count on and off (start and pause). Normally, this button is not needed, but there
may be situations that it may be useful.

Parameter Description: The first optional parameter is used to change the appearance
of the field (these field use the eforms package). The second parameter is the name of
a timer (<t_name>) that has already been defined by \setLongCntDwn. The last two
parameters sets the width and height of the form fields.

For example, the button will toggle the New
Years Day counter.

The verbatim listing is as follows:

For example, the button \lcntdwnToggle{NewYearsLocal}{11bp}{11bp}\kern1bp
\lcntdwnDisplay{NewYearsLocal}{2.5in}{11bp} will toggle the New Years
Day counter.

4.3. The clock timer

I was just getting to wrap up this package, when I decided that it wouldn’t be too much
trouble to define clock timers. I include the code in as part of the longcount option
because the code for the clock is derived from the longcount count. Multiple clocks
can be activated at once, both clocks in the local time zone, as well as other time zones,
as shown below.

Time Date

Local Time:

CEST:

Note: You can specify the time zone you want your clock to function in, there is, how-
ever, no way to automatically adjust time zone when there is a change from standard

The long countdown 12

to/from summer time.4

For these two clocks, we need to execute the command \setClockTimer in the pream-
ble.

\setClockTimer{LocalClock}{}
\setClockTimer{CESTClock}{tzoffset=+0200}

The first parameter is the name of the clock and the second takes key-value pairs. For
the LocalClock, we take the defaults, for the CESTClock, we set the time zone offset
from UTC to CEST (Central European Summer Time).

The code for the clocks themselves that appear above follows:

\begin{tabular}{rcc}
&\textbf{Time}&\textbf{Date}\\[3bp]
Local Time:&
\cntdwnclocktime{LocalClock}{1in}{11bp}&
\cntdwnclockdate{LocalClock}{1in}{11bp}\\[3bp]
CEST:&
\cntdwnclocktime{CESTClock}{1in}{11bp}&
\cntdwnclockdate{CESTClock}{1in}{11bp}%
\end{tabular}

The current time is displayed by \cntdwnclocktime and the date is displayed by
\cntdwnclockdate.

• Using \setClockTimer in the preamble

For each clock , the \setClockTimermust be used to define the properties of the clock.

\setClockTimer{<t_name>}{<key-values>}

Command Description: The command defines the properties of the clock.

Parameter Description: The first parameter <t_name> is a name you assign the clock.
The name must be unique among all timer names defined in the document. The second
parameter consists of key-value pairs, described below.

Key-Value Pairs: The second parameter takes several key-value pairs.

• tzoffset: The time zone offset of the time of the event. If tzoffset is not
specified, then time is interpreted as local time. The format for tzoffset is
Z|OHHmm, where Z means that local time is equal to UT (Universal Time). For the
OHHmm pattern, the O is + (plus) or - (minus); a + (plus) means that local time is
later than UT, and a - (minus) means that local time is earlier than UT. For example

4The statement has limited truth to it. If the dates are known when a given time zone changes UT
offsets (between standard and summer/daylight savings time), you can write some JavaScript to make this
adjustment dynamically. The problem is the dates/times may change from year to year. The ultimate
solution is have access to a time/date database/server.

The long countdown 13

CST (Central Standard Time) is -0600while CET (Central European Time) is +0100.
See http://www.timeanddate.com for time zone information. HH is the number of
hours offset from UT and mm is the number of minutes (some time zones are
measured in hours and minutes, for example, Australian Central Standard Time
is +0930).

• refreshrate: The refresh rate of the counter, the default is 1000 (milliseconds).

• autorun: A Boolean that determines whether the count begins when the page
containing the counter is opened. The default is true.

• autopause: A Boolean that determines whether the count is paused when the
page containing the counter is closed. The default is true.

• currtimefunc: When a long count is active, cntdwn provides the current time
and date. The document author can design a custom display through this key.
The default value of this key is _defaultTimeDateFunc, the definition of which
is

function _defaultTimeDateFunc(oTime,cTimer) {
try{ this.getField(cTimer+".clock.time").value

=util.printd("H:MM:ss",oTime); } catch(e) {};
try { this.getField(cTimer+".clock.date").value=

util.printd("mm/dd/yyyy", oTime); } catch(e) {};

where oTime is the Date object containing current time/date.

• Commands that go in the body

In the body of the document there are several commands used with the long countdown
timer.

\cntdwnclocktime[<eform_options>]{<t_name>}{<width>}{<height>}
\cntdwnclockdate[<eform_options>]{<t_name>}{<width>}{<height>}

Command Description: Each command creates a read-only text field, the first displays
the time, and second displays the date. countdown.

Parameter Description: The first optional parameter is used to change the appearance
of the field (these field use the eforms package). The second parameter is the name of
a timer (<t_name>) that has already been defined by \setClockTimer. The last two
parameters sets the width and height of the form fields.

\clockToggle[<eform_options>]{<t_name>}{<width>}{<height>}

Command Description: The command creates a push button field that is used to toggle
the clock on and off (start and pause). Normally, this button is not needed, but there
may be situations that it may be useful.

http://www.timeanddate.com

The long countdown 14

Parameter Description: The first optional parameter is used to change the appearance
of the field (these field use the eforms package). The second parameter is the name of
a timer (<t_name>) that has already been defined by \setClockTimer. The last two
parameters sets the width and height of the form fields.

Note: It is easy to create a single button to toggle all clocks, or a selection of clocks,
but this button is not provided with this package.

That’s all for now, I simply must get back to my retirement. DPS

	Table of Contents
	1 Introduction
	2 Requirements and Sample files
	3 The short countdown
	3.1 Using \setShortCntDwn in the preamble
	3.2 Commands that go in the body

	4 The long countdown
	4.1 Using \setShortCntDwn in the preamble
	4.2 Commands that go in the body
	4.3 The clock timer
	• Using \setClockTimer in the preamble
	• Commands that go in the body

	_oTimer1:
	cntdwn:
	TimeRemaining:
	Notify1:
	Notify2:
	Notify3:

	_oNewYearsLocal:
	lcntdwn:
	Toggle:
	timeToFromEvent:

	_oNewYearsCET:
	lcntdwn:
	timeToFromEvent:

	_oLocalClock:
	clock:
	time:
	date:

	_oCESTClock:
	clock:
	time:
	date:

