pyspark.sql.functions.to_date#

pyspark.sql.functions.to_date(col, format=None)[source]#

Converts a Column into pyspark.sql.types.DateType using the optionally specified format. Specify formats according to datetime pattern. By default, it follows casting rules to pyspark.sql.types.DateType if the format is omitted. Equivalent to col.cast("date").

New in version 2.2.0.

Changed in version 3.4.0: Supports Spark Connect.

Parameters
colColumn or column name

input column of values to convert.

format: literal string, optional

format to use to convert date values.

Returns
Column

date value as pyspark.sql.types.DateType type.

Examples

>>> import pyspark.sql.functions as sf
>>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['ts'])
>>> df.select('*', sf.to_date(df.ts)).show()
+-------------------+-----------+
|                 ts|to_date(ts)|
+-------------------+-----------+
|1997-02-28 10:30:00| 1997-02-28|
+-------------------+-----------+
>>> df.select('*', sf.to_date('ts', 'yyyy-MM-dd HH:mm:ss')).show()
+-------------------+--------------------------------+
|                 ts|to_date(ts, yyyy-MM-dd HH:mm:ss)|
+-------------------+--------------------------------+
|1997-02-28 10:30:00|                      1997-02-28|
+-------------------+--------------------------------+