sigmf
              For a given domain x and parameters params (or [a c]), return the corresponding y values for the sigmoidal membership function.
The argument x must be a real number or a non-empty vector of strictly increasing real numbers, and a and c must be real numbers. This membership function satisfies the equation:
f(x) = 1/(1 + exp(-a*(x - c)))
which always returns values in the range [0, 1].
The parameters a and c specify:
     a == the slope at c
     c == the inflection point
 
and at the inflection point, the value of the function is 0.5:
f(c) == 0.5.
To run the demonstration code, type "demo sigmf" (without the quotation marks) at the Octave prompt.
See also: dsigmf, gauss2mf, gaussmf, gbellmf, pimf, psigmf, smf, trapmf, trimf, zmf
| 
 x = 0:100;
 params = [0.3 40];
 y1 = sigmf(x, params);
 params = [0.2 40];
 y2 = sigmf(x, params);
 params = [0.1 40];
 y3 = sigmf(x, params);
 figure('NumberTitle', 'off', 'Name', 'sigmf demo');
 plot(x, y1, 'r;params = [0.3 40];', 'LineWidth', 2)
 hold on;
 plot(x, y2, 'b;params = [0.2 40];', 'LineWidth', 2)
 hold on;
 plot(x, y3, 'g;params = [0.1 40];', 'LineWidth', 2)
 ylim([-0.1 1.2]);
 xlabel('Crisp Input Value', 'FontWeight', 'bold');
 ylabel('Degree of Membership', 'FontWeight', 'bold');
 grid;
                     | 
